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ABSTRACT 

Typical vehicle simulations require numerical integration at an integration time step 

no larger than 0.01 seconds, usually less than half that time. This does not leave enough time 

to carry out the complex calculations required for detailed collision calculations in real time. 

This thesis presents a method that strikes a compromise, which, although not carrying all the 

detail necessary for very accurate collision calculations, allows useful simulations to proceed 

in real time. The method has three parts: collision detection, estimation of the momentum 

transfer expected to result from the collision, and application of forces to provide the desired 

momentum transfer. The method uses a common scene graph for collision detection, which 

allows the system to work with most of the common scene database formats without the need 

of specialized preprocessing. All of the collision detection and response calculations employ 

open-source code and are designed to work well at speeds required by real-time vehicle 

simulation. Examples based on the VDANL vehicle dynamics simulation illustrate the utility 

of the methodology. 
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CHAPTER 1: INTRODUCTION 

Real-time human-in-the-loop driving simulation is used for a variety of purposes 

from vehicle design evaluation to driver behavior studies. In real-time vehicle simulations 

the interaction of the driver with the simulated vehicle and virtual environment is often 

dependent on how "real" the experience feels. The immersive feeling can be improved 

through a variety of methods including 3D stereo graphics, sound cues, force feedback 

steering, and physical motion through a motion base. The addition of collision detection and 

simulation to human-in-the-loop simulations can improve user immersion and thus the 

overall driving experience. 

1 

The accurate simulation of a vehicle collision typically requires numerically intensive 

calculations. Nevertheless, collision detection and simulation are not new to either the 

vehicle dynamics or computer graphics communities. Detailed non-real-time vehicle 

collision simulations have been in use since the 1960's for applications from assessing 

vehicle crashworthiness to reconstructing accidents for litigation. 

This thesis seeks a compromise between the detailed non-real-time vehicle collision 

simulations and very simple non-realistic responses. The collision detection and response is 

simulated through the vehicle dynamics application rather than the image generator. This 

allows the response to be included in the dynamic behavior of the entire vehicle model, but 

also requires faster computation times. Quality commercial vehicle dynamics codes require 

an integration frequency of at least 200 Hz, which is 3 to 20 times faster than typical VR 

frame rates. 
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The following chapters present a method to apply collision effects in real time to 

vehicle dynamics simulations. They describe the collision detection methods and response 

algorithms, and they present an implementation of the collision library in the context of a 

commercial vehicle dynamics program, Vehicle Dynamics Analysis Non-Linear (VDANL) 

from Systems Technology Inc. Finally, the real-time performance is analyzed and possible 

future work is discussed. 

2 



www.manaraa.com

CHAPTER2: BACKGROUND 

Interest in real time collision calculation follows from an interest in driving 

simulation, which demands real time calculations. References [1,2,3,4] describe several 

different driving simulators, and reference [ 5] describes four common components to all 

driving simulators: 

• A simulation of the physics of the vehicle model and the road surface. 

• A simulation of the surrounding environment. 

• Video and audio displays to display state output to the operator. 

• Input control devices for the operators. 

3 

Reference [6] further discusses these components of vehicle simulation and adds two 

additional components for a collaborative driving simulation application, collision interaction 

and networking management. This thesis focuses on simulating vehicle collisions, wherein 

there are two key challenges, detecting that a collision has occurred, and computing the 

effects of the collision in real time. 

Detailed collision simulation has been an active area ofresearch since the 1960's. 

Various lumped mass spring models were presented in the early 1970's [7,8] as a method to 

evaluate the crashworthiness of vehicles in a more cost effective way. In 1973 McHenry [9] 

presented the Simulation Model of Automobile Collisions (SMAC) computer program as a 

tool for accident reconstruction. All of these applications were intended to simulate 

somewhat detailed collision events, and in the accident reconstruction cases, were often used 
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in an iterative way to match physical evidence. They were not concerned with real-time 

performance. 

4 

In 1983 Macmillan [10] presented basic rigid body impulse response calculations 

specifically for vehicle collisions. The method assumes the pre- and post-collision velocities 

at the impact point are governed by a coefficient of restitution. This method of calculation is 

appealing for real-time simulation because of its simplicity and speed of the calculations. 

Hahn [11] in 1988 presented these same rigid body impulse response calculations for 

more general rigid bodies in computer animations. About that same time Moore and 

Wilhelms [12] discussed the topics of collision detection and collision response. They 

presented two response methods, a spring based penalty method and an impulse based 

solution. The impulse method was typically faster to compute, especially in violent 

collisions, and had an added benefit because the resulting system of equations need only be 

solved once per collision instead of every time step as required by the spring based methods. 

This thesis implements the impulse methods given by Macmillan and also presents a 

method based on the loss of kinetic energy during the collision. Both these response methods 

give reasonable looking results in real-time. The thesis focuses on collision response 

calculations, but it will also demonstrate that the real-time performance is highly dependent 

on the collision detection algorithm speed. Lin [13], Jimenez [14], and Kim [15] have 

provided recent surveys of collision detection methods. 

The following chapters address the issues of real-time collision detection and 

response and address the challenge of real-time implementation, presenting methods, an 

application of their solution, and their resulting performance. 
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CHAPTER 3: COLLISION DETECTION 

Typically collisions are detected by searching a database of collidable objects to 

determine if any interference exists. If a collision is detected, the collision point and 

collision plane normal are saved to enable calculation of the resulting response. References 

[11, 12, 13] present several different ways to perform the detection operation. 

For this application the Open Scene Graph (OSG) [16] library was selected to 

perform the collision detection against a visual scene graph database. OSG provides a great 

deal of flexibility in database formats while still maintaining ample computation speed. In 

addition, OSG is free, open source, and can run on several computer platforms. Other 

methods may have a slightly higher speed, particularly with databases containing a high 

number of polygons, but these methods often require specialized file formats and substantial 

preprocessing [15]. 

5 

To test for a collision against the scene graph, the vehicle is represented as a set of 

line segments that generate a horizontal 2D rectangular plate around the vehicle at the center 

of gravity (CG) height. For every integration time step, each segment in the bounding 

rectangle is tested against the scene for intersections. The OSG libraries automate much of 

this process. The algorithm must simply provide the OSG library with the current list of line 

segments positioned properly to represent the current location and orientation of the vehicle. 

The library then traverses the scene graph searching for intersections. The speed of the 

traversal depends greatly on the spatial organization of the graph. Chapter 6 discusses this in 
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more detail. Figure 3-1 shows a collision example with the front-right comer of the 

bounding rectangle intersecting a wall. 

Figure 3-1: Vehicle collision bounding rectangle in a front right side collision. 

To enable calculation of the vehicle response to the collision, simple algorithms 

typically require specification of the force application point and the direction of the force. 

This method finds the force point of application by computing the midpoint of the line of 

interference between the two objects. For example, in Figure 3-2 the point of application 

would be the midpoint of the line segment a-b. Since this application is concerned with 

flexible vehicle bodies hitting rigid barriers, the collision plane normal is the surface normal 

of the rigid barrier. The results of the OSG collision traversal provide the collision surface 

normal and the segment intersection locations used to compute the interference line 

midpoint. 

6 
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7 

Collision Point 

Intersection Points 

Figure 3-2: Collision application point and collision normal. 
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CHAPTER 4: COLLISION RESPONSE 

The goal of the response is to simulate collisions in a useful way that makes sense but 

is not intended to be correct in engineering detail. Several simplifying assumptions enable 

the real-time calculations: 

• The impact is between a vehicle and a rigid wall. 

• The normal vector to the wall is in the yaw plane of the vehicle. 

• The forces of impact are in the yaw plane and at the mass center height of the 

vehicle. 

• The time duration of the impact is small compared to the time scale of yaw 

plane vehicle motion. 

• There is only one impact force, and this impact force remains fixed relative to 

the vehicle throughout the impact. 

This chapter presents two methods for computing the collision response and the resulting 

force and moment to apply to the vehicle. 

4.1 Linear and Angular Momentum Relationships 

Both methods presented below begin with the application of momentum 

relationships. First apply linear momentum: 
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(4-1) 

where the collision force occurs at time to, the duration of the collision is L1t, F is the force 

vector applied to the vehicle by the barrier, mis the mass of the vehicle, V1 is the yaw plane 

velocity vector of the vehicle mass center just before the force is applied, and V2 is the yaw 

plane velocity vector of the vehicle mass center just after the force is applied. The time 

interval L1t is assumed to be small enough that other forces, forces from the road on the tires 

for example, do not affect the momentum transfer. The analysis here is restricted to one 

impact force. The extension to more impact forces, at least from a momentum point of view, 

is straightforward. 

A similar relationship applies to angular momentum, namely, 

(4-2) 

where lzz is the vehicle yaw moment of inertia about its mass center, p is the vector from the 

total vehicle mass center to the point of impact, and r1 and r2 are the vehicle yaw rates before 

and after the collision respectively. 

Equations (4-1) and (4-2) have a total of three unknowns, the velocity of the mass 

center after the impact, the angular velocity after the impact, and the impulse. A combination 

of intuition and experience provides the third equation needed to solve the system. The 

following sections describe two methods to obtain this additional relationship. 
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4.2 Coefficient of Restitution Method 

First consider the methods presented by Macmillan [10], who calls for the normal 

velocity change of the vehicle at the point of impact to be a function of a coefficient of 

restitution. 

(4-3) 

10 

Vp1 and Vp2 are the velocity vectors of the vehicle at the point of impact before and after the 

collision and N is the unit normal to the rigid surface. The so-called coefficient of restitution 

e is a function of the details of the collision. Macmillan suggests values in the range of 0.0 to 

0.3 for most vehicle collisions. Equations (4-1), (4-2), and (4-3) yield the impulse, post 

collision angular velocity, and velocity of the mass center. 

The algorithm implementation defines the collision frame of reference about the point 

of collision with a primary force along the surface normal of the collision and a frictional 

force along the tangent direction. Macmillan's presentation can be applied to the general 

two-vehicle collision, but the presentation here, which uses Macmillan's nomenclature, is 

limited to the special case of a single vehicle hitting a static rigid body. 

Given the vehicle velocity vector projected into the collision normal and tangential 

directions, the following momentum equations relate the pre- and post-collision velocities 

with the impulse: 
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m( vn 2 - vn 1) = Impulse (4-4) 

m( vt 2 - vt 1) = µ·Impulse (4-5) 

Where vn is the mass center velocity normal to the collision surface, vt is the mass 

center velocity tangent to the collision surface, µ, is the coefficient of friction, and Impulse is 

the impulse from Fn, normal to the collision surface. 

t 0+6t 

lmpu1'e = f F n dl 
t 0 (4-6) 

The change in angular momentum is given by, 

I zz·(r 2 - r i) = lmpulse·{µ·x - y) (4-7) 

where r is the yaw rate and x and y are the distances from the total vehicle mass center to the 

point of collision as illustrated in Figure 4-1. 
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Fn 

Figure 4-1: Restitution method collision diagram. 

From Equation ( 4-3) the pre- and post-collision velocities are related by 

P 2 = -e·p 1 (4-8) 

where p1 and p2 are the vehicle velocities at the point of impact and normal to the collision 

surface and e is the coefficient of restitution. It is clear from Figure 4-1 that 

P 1 = vn 1 - r rY 

P 2 = vn 2 - r 2·Y 

where y is the moment arm from the vehicle's mass center to the collision normal. 

(4-9) 

(4-10) 

12 



www.manaraa.com

13 

The coefficient of restitution specifies how much velocity and thus energy is retained 

in the system. According to Macmillan, typical vehicle collisions have coefficients of 

restitution of between 0.0 and 0.3. Based on an interpretation of the results for a range of 

collisions simulated in real time, it is useful to set the coefficient ofrestitution as a function 

of the angle of attack between the vehicle and the wall, from 0.3 for small angles to 0.05 at a 

90-degree impact. Figure 4-2 shows a cosine function of the angle of attack that fits the 

desired relationship well. The function is defined as: 

e(a) = 0.125·cos(2·a) + 0.175 

c:: 
0 
·~ 
·.:: 
"' II> 

0.24 

~ e(a) 0.18 

5 ·;:; 
IE 
II> 

8 
0.11 

.o.os. 
0.05 0 0.2 0.4 

Restitution vs. Angle of Attack 

0.6 0.8 
a 

Angle of Attack 

1.2 

Figure 4-2: Coefficient of restitution vs. angle of attack. 

(4-11) 

1.4 
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The coefficient of restitution relationship and the momentum equations yield the 

impulse. Substituting Equation ( 4-10) into Equation ( 4-8) yields: 

vn 2 - r2·Y = -e·p I (4-12) 

where, Pt is computed from Equation (4-9) and the pre-collision velocities. Using the 

momentum equations (4-4 through 4-7), rearranging and substituting into Equation (4-12) 

yields 

m·vn 1+Impulse [ Impulse(µ·x-y)] 
- Y . r I + = -e·p I 

m Izz (4-13) 

Simplifying, 

(4-14) 

Now, if, 

I y2 
a•-+-

m Izz (4-15) 

and, 

(4-16) 
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then the impulse is 

I+ e 
Impulse = ·p 1 

a - µ-b (4-17) 

There are two ways to apply this impulse in the context of the simulation: One 

method is to use the impulse, initial velocities, and momentum equations to compute the post 

collision linear and angular velocities. The new velocities then replace the vehicle velocities 

and the integration is continued along the new path of travel. This is the typical application 

of an impulse treated as an instantaneous event. This method is not practical for this 

particular application because of the interaction with third-party commercial dynamics 

software, which cannot reset state variables and restart the integration quickly enough to 

meet the real-time constraints. 

Another method of application is through the use of a collision force and moment. 

Assuming the impulse can be applied over a small time step, one can compute a constant 

force to apply over that time step to achieve the desired impulse. Using this method the 

following forces can be applied to the vehicle: 

Impulse Fn = __...___ 
.1.t 

F µ·Impulse t= ..;...._......;__ 
.1.t 

(4-18) 

(4-19) 
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where Fn and Ft denote the force along the collision normal and tangent respectively. Finally 

the moment is computed from the collision force and vehicle geometry. 

Moment= p x (Fn + Ft) (4-20) 

where p is the moment arm from the point of impact to the vehicle mass center. 

4.3 Kinetic Energy Loss Method 

Another method to acquire the additional information to solve for the collision force 

and moment is to stipulate the desired energy loss during the collision. In particular, 

consider the parameter P, which indicates the fraction of yaw plane energy remaining after 

the collision. 

P= m(V2 ·V2)+/zz ·r22 

m(V1 . Vt)+ Izz · 1j 2 
(4-21) 

As in the coefficient ofrestitution method, it is useful to make Pa function of the 

angle of attack between the vehicle and a rigid wall. Again, a cosine function works well. 

Figure 4-3 presents a plot of the function we have found useful. 

P(a) := 0.44cos(2·a) + 0.4~ (4-22) 
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.0.92, 
Fraction of Energy Kept 

I 

0.8 

15.. 
0 
~ 
;>.. 0.6 
~ P(a) 
s:: "'"--

.;:! 
0 0.4 s:: 
:2 

0.2 

,0.04, 
0 

0 0.5 1.5 
,0, a .] .571, 

Angle of Attack 

Figure 4-3: Fraction of kinetic energy kept as a function of collision angle of attack. 

The collision force is 

~ 

F = Fo (ai + bj) 
(4-23) 

where i and j are unit vectors in the vehicle's local coordinate system (see Figure 4-4). F0 is 

the magnitude of the force. 

Following the procedure of the restitution method, linear momentum is applied for 

the system. Referring to Figure 4-4 and assuming a small finite time ~t, Equation ( 4-1) can 

be written in scalar form 

m(u 2 -u 1) 
Fo-a=----

.M (4-24) 
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(4-25) 

where u and v are the longitudinal and lateral components of the mass center velocity . 

• l ! !/l 
1. Ft 

··--·-··-······-···-··-·--· 

i, v 

Figure 4-4: Kinetic energy method force diagram for a front right corner collision. 

Similarly, the change in angular momentum about the mass center is given by 

Equation (4-2) and can be computed in scalar form as: 

(4-26) 

18 
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where r is the yaw rate, Izz is the yaw moment of inertia, and, c and d are illustrated in Figure 

4-4. 

p={ci+dj) (4-27) 

The relationship between pre- and post-collision kinetic energy is given by 

E 2 =P·E1 (4-28) 

where Pis the fraction of kinetic energy maintained after the collision and 

(4-29) 

( 2 2) 2 E 2 =0.5-m u 2 +v 2 +0.5-lzz·r2 (4-30) 

These equations yield the force magnitude F0 required to achieve the impulse across 

the specified collision time step ~t. First, the initial conditions are used to compute the initial 

energy E1 with Equation (4-29). The final energy E2 is then computed with Equation (4-28), 

the initial energy, and the known fraction of energy maintained across the collision. 

From the momentum equations relate the post-collision velocity and yaw rate to the 

magnitude of the impact force: 
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F O"a·dt + mu 1 
u2= 

m 

F o·b·dt + mv l 
v2= 

m 

(F O"dt·b·c - F O"M·a·d + I zir 1) 
r2 = 

I zz 

Now Equation (4-30) yields, 

( 2 2 2 2 2) E 2 _ m F 0 ·dt ·a + 2·F O"M·a·mu 1 + m ·u 1 
- + .... 

0.5 2 m 

( 222 2 2) m F 0 ·b ·dt + 2·F O"b·dt·mv 1 + m ·v 1 2 
.. + + 1zz·r2 

2 
m 

which can be rewritten as 

_2 = F 02. 6t · a + b + 6t · a ·d + b ·c - 2·a·d·b·c + .... E [ 2 ( 2 2) 2 ( 2 2 2 2 ) l 
~ m Iu 

.... + F o{ 2·dt·( a·u l + b·v 1) + 2·dt·r 1-(b·c - a·d)] + .... 

( 2 2) 2 .... + m u 1 + v 1 + I zz·r 1 

The final solution for F0 is 

20 

(4-31) 

(4-32) 

(4-33) 

(4-34) 

(4-35) 
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(4-36) 

Where: 

~?(a2 + b2) ~?(a2-d2 + b2-c2 - 2·a·d·b·c) 
A= + ----------

m Izz (4-37) 

B = 2·~t·( a·u I + b·v 1) + 2·~t·r r(b·c - a·d) (4-38) 

( 2 2) 2 E2 
C = m u I + v I + I zz"r I - 0.5 

(4-39) 

Implementation of this algorithm has indicated that the larger of the two forces 

prevents the vehicle from going through the barrier, and the smaller allows the vehicle to go 

through the barrier. Although the larger force is usually used, it is clear that the lower force 

may also be useful - say for a head on crash through a barrier, which causes the energy loss 

given by the parameter P. 

The plot in Figure 4-5 illustrates the two solutions for this method. The plot shows an 

impact with a collision point in the front center of the vehicle. It illustrates the effect of the 

angle of attack on energy loss capability and the resulting force magnitude. Notice the 90-

degree case curve covers the entire range from 100%-0% energy maintained. At the 100% 

energy condition there are two possible solutions. One has the force magnitude equal to zero 

and thus the vehicle remains moving forward at its current velocity. The other solution 

applies a large backward force such that the vehicle maintains 100% kinetic energy, but is 
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moving backward at the initial speed. The other curves show the results with differing angles 

of attack. As the angle of attack decreases, the maximum possible energy loss drops off 

because the normal force is decreasing and there is a limit, µ*Fn, for how large the frictional 

force can get to achieve the desired energy loss. It is also interesting to see the 90-degree 

coefficient of restitution collision result superimposed on the energy solution. It matches the 

larger, more negative, force solution from the kinetic energy method, which does not allow 

the vehicle through the wall. For the purposes of the collision library we apply the larger 

force solution that does not allow the vehicle to penetrate the wall. 
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Figure 4-5: Force magnitude vs. kinetic energy maintained for varying angles of attack. 
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CHAPTER 5: VDANL IMPLEMENTATION 

The methods presented here can be used with any vehicle dynamics platform. There 

are two choices for implementation upon collision detection and calculation of the 

momentum change: 

1. Reset the state variables of the simulation with the post collision velocity and yaw 

rate and continue integration. 

2. Apply a constant force over a short period of time, which will cause the desired 

momentum change. 

The first method, resetting the state variables, is most suitable for modelers who have 

control of the vehicle dynamics software. It is not very practical for modelers using 

commercial code because in the context of such code the modeler does not typically have the 

ability to overwrite the state variables and restart the motion quickly enough to meet the real-

time constraints. This thesis uses the second method, namely, applying the force required to 

cause the desired momentum change. 

For this application, both the coefficient ofrestitution method and the energy method 

were implemented with the commercial software VDANL [17]. The implementation 

assumed a constant force between the rigid barrier and the vehicle for a small period of time 

to yield the desired momentum change, and used VDANL's User Defined Module option to 

apply the collision forces and moments to the vehicle model. 
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For both response methods, the force of impact was composed of a force normal to 

the surface of collision and a frictional force tangent to the surface. A coefficient of friction 

µwas used to define the friction force F1 as 

(5-1) 

Macmillan suggests coefficient of friction values from 0.0-0.3 for typical vehicle 

collisions. We have found it useful to make the coefficient of friction a function of the angle 

of attack from 0.3 at small angles of attack to 0.0 for head-on collisions where we expect the 

direction of the impact force to be normal to the collision surface. 

To implement the method, the collision scene and vehicle parameters are initialized 

before the simulation begins. Then, at the initiation of each integration time step, the 

algorithm tests for collisions. If a collision is detected, the resulting force and moment are 

computed and applied to the vehicle dynamics model. 

5.1 Initialization 

Prior to starting the integration, the user must initialize the collision scene graph and 

supply vehicle parameters for the collision testing and response calculations. The collision 

scene file can be any visual database format supported by Open Scene Graph [ 16]. The 

Virtual Reality Applications Center primarily uses the OpenFlight format. The scene graph 

libraries internally handle the database initialization from a specified database file. The rest 

of the initialization deals with setting up the vehicle representation and parameters. 
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The following parameters are required: 

• Vehicle mass 

• Vehicle yaw moment of inertia 

• Distance from the center of gravity (CG) to the front of the vehicle body 

• Distance from the CG to the rear of the vehicle body 

• Vehicle body width 

• CG height 

The various dimensions are used to generate a 2D bounding rectangle, which is set at 

the CG height. 

5.2 Collision Testing and Force Computation 

For each dynamics time step the simulation must supply the collision algorithm with 

the simulation time, linear position and velocity, and angular position and velocity of the 

vehicle. This allows the library to move the bounding rectangle in the scene and test for 

interference with any of the scene's elements. If a collision is detected, the collision point 

and collision surface normal are stored and the force and moment are computed using the 

methods in Chapter 4 for application to the sprung mass. 
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5.3 Application of Force and Moment 

Equations (4-1) and (4-2) plus equation (4-3) or (4-4) enable the calculation of the 

impulse J Fdt and the angular impulse p x J Fdt. We have implemented these impulses in 

the context ofVDANL by assuming a constant force F applied over a small time step to 

achieve the momentum change. Thus, 

(5-2) 

We verified that the fixed step integrator ofVDANL provides accurate results with a 

collision duration ~t of one integration time step, 

~t = 0.005 second (5-3) 
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CHAPTER6: PERFORMANCE 

The performance testing focused on the two primary objectives, that the results look 

reasonable and follow rigid body momentum and energy relationships correctly, and that the 

algorithms compute in real time. 

The momentum and energy calculations were checked using two different operating 

scenarios (see Figures 6-3 and 6-4). One scenario examined a head-on collision at 

approximately 30 mph and the other scenario examined a front right side impact with a 10-

degree angle of attack at 60 mph. Each scenario was run with the two collision response 

methods. Comparing the pre- and post-collision velocity vectors and yaw rates verified that 

the algorithms run correctly. 

The real-time performance of the algorithm was tested by using two databases, one 

simple and one more complex. The complexity of a database is primarily measured by 

polygon count. Figure 6-1 presents the simple database, a test scene containing an L-shaped 

wall and a flat driving surface. The database contains 612 triangles, all of which are used to 

test for collisions. Figure 6-2 presents part of the more complicated Watkins Glen racetrack 

scene. The entire visual scene consists of 8780 triangles, but we created a version of the 

database with only the vertical elements for collision testing. This removed unnecessary 

terrain and sky polygons and brought the collision triangle count to 1838. 
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Figure 6-1: L-shaped test scene. 

Figure 6-2: Watkins Glen track. 

Numerical experiments verified the expectation that the collision computation speed 

is mainly dependent on collision scene complexity. All of the experiments were run on a 300 

Mhz Pentium II PC with 192 MB of RAM. Both the restitution and kinetic energy based 

methods yield fast computation times for the collision response portion of the algorithm 
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averaging 0.013 ms per integration time step independent of the complexity of the database. 

This shows the response calculation time is negligible as it is only 0.26% of the dynamics 

integration time step of 5 ms. 

The collision detection calculations can take a large portion of the 5 ms time step. 

Table 6-1 presents the average dynamics update times for the numerical experiments. These 

update times include the normal vehicle dynamics calculations as well as all collision 

detection and response calculations. Since the dynamics and collision response calculation 

speeds are relatively constant, this table presents a good measure of relative detection speeds 

for different scenes. The table illustrates how the more complicated scene requires higher 

query times and thus longer update times. 

Table 6-1: VDANL update method times using different collision scenes. 

Kinetic Energy Coefficient of 
Method Restitution 

Method 

Test Rail 2.52 ms 2.60 ms 

Watkins Glen 4.69 ms 4.64ms 

Watkins Glen 3.88 ms 3.90 ms 
Optimized by 

Multi Gen 
Creator 

No Collision 0.99 ms 
Calculation 
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Both scenes were created with Multigen Creator, which can optimize the scene graph 

hierarchy to improve the collision detection speed [18]. Table 6-1 shows update times for 

both models tested in a non-optimized state and also shows the Watkins Glen database after 

the Creator optimization. This optimization reorganizes the polygons spatially so collisions 

are detected more quickly by only querying polygons in close proximity to the vehicle. 

Optimizing the Watkins Glen database improved the overall performance by over 15%. 

These data indicate that, depending on what other activities need to be completed 

during the time step (i.e. terrain queries, networking, etc.), the simulation can begin to have 

computation times outside of real-time if the user is not careful to manage the various 

computation speeds. 
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Figure 6-3: Animation stills for the front right side hit collision test scenario. 



www.manaraa.com

33 

Figure 6-4: Animation stills for the head on collision test scenario. 
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

The topic of collision simulation is not new in the vehicle dynamics and computer 

graphics communities. Detailed collision simulations are often used by the vehicle design 

community to evaluate the vehicle structure and in litigation to reconstruct accidents. Many 

VR applications have some sort of collision detection, each with varying levels of complexity 

and accuracy. 

This thesis presented an algorithm that enables real-time collision simulation for 

human-in-the-loop driving simulations. The impulse momentum methods strike a 

compromise between highly detailed vehicle collision simulations and very simple reactions 

sometimes used in virtual reality. It discussed the three steps to compute a collision: 

collision detection, computation of the resulting impulse, and application of the force and 

moment to a vehicle dynamics model. The VDANL based implementation illustrated real-

time collision in simple and moderately complex databases. The resulting collision library 

was composed completely of open source code and can be implemented in almost any real-

time vehicle simulation. 

In the future, the library could be extended to include collisions with moving objects. 

The primary interest is in vehicle-to-vehicle collisions for collaborative driving simulations. 

Modification of this code to allow for moving collidable bodies will be challenging, 

particularly when implemented for vehicles simulated on different dynamics engines but 

interacting in the same environment. Continued improvement in computation speed will help 

in the extension of this work to include additional vehicles and more complicated databases. 



www.manaraa.com

35 

REFERENCES 

1. Romano, R.A., Stoner, J.W., Evans, D.F., "Real Time Vehicle Dynamics Simulation: 
Enabling Tool for Fundamental Human Factors Research", SAE Paper 
910237, 1991. 

2. Greenberg, J.A., Park, T.J., "The Ford Driving Simulator", SAE Paper 940176, 1994. 

3. Bertollini, G.P., et al., "The General Motors Driving Simulator", SAE Paper 940179, 
1994. 

4. Chen, L.D., Papelis, Y., Watson, G., Solis, D., "NADS at the University oflowa: A 
Tool for Driving Safety Research", Paper presented at the lstHuman-
Centered Transportation Simulation Conference, Iowa City, IA, 2001. 

5. Gruening, J., Bernard, J., Clover, C., Hoffmeister, K. "Driving Simulation", SAE 
Paper 980223, 1998. 

6. Balling, 0., Knight, M., Walter, B., Sannier, A. "Collaborative Driving Simulation", 
SAE Paper 2002-01-1222, 2002. 

7. Kamal, M.M., "Analysis and Simulation of Vehicle to Barrier Impact", SAE Paper 
700414, 1970. 

8. Greene, J.E., "Computer Simulation of Car-To-Car Collisions", SAE Paper 770015, 
1977. 

9. McHenry, R.R., "Computer Program for Reconstruction of Highway Accidents", 
SAE Paper 730980, 1973. 

10. Macmillian, R.H., Dynamics of Vehicle Collisions, Channel Islands, UK: 
Inderscience Enterprises Ltd., 1983. 

11. Hahn, J.K., "Realistic Animation of Rigid Bodies'', Computer Graphics, Volume 22, 
Number 4, 1988. 

12. Moore, M. and Wilhelms, J., "Collision Detection and Response for Computer 
Animation", Computer Graphics, Volume 22, Number 4, 1988. 

13. Lin, C.M., Gottschalk, S., "Collision Detection Between Geometric Models: A 
Survey'', University of North Carolina, 1998. 



www.manaraa.com

36 

14. Jimenez, P., Thomas, F., and Torras C., "3D Collision Detection: A Survey", Institut 
de Robotica i Informatica Industrial, Barcelona, Spain, 2000. 

15. Kim, C., "Collision Detection Algorithms", Virtual Reality Applications Center, Iowa 
State University, 2002. 

16. Open Scene Graph Documentation, Online. www.openscenegraph.org. Date 
retrieved: November 12, 2002. 

17. Allen, W.R., Rosenthal, T.J., Klyde, D.H., Chrstos, J.P., "Vehicle and Tire Modeling 
for Dynamic Analysis and Real-Time Simulation", SAE Paper 2000-01-1620. 

18. MultiGen Creator Users Guide, MultiGen-Paradigm Inc., 1999. 


	Simulation of vehicle collisions in real time
	Recommended Citation

	Simulation of vehicle collisions in real time

